Prime quadruplets up to 542715
Prime quadruplets: If {p, p+2, p+6, p+8} are primes then it becomes a prime quadruplet.
There is 109 prime quadruplets smaller than 542715.
List#
{5, 7, 11, 13}, {11, 13, 17, 19}, {101, 103, 107, 109}, {191, 193, 197, 199}, {821, 823, 827, 829}, {1481, 1483, 1487, 1489}, {1871, 1873, 1877, 1879}, {2081, 2083, 2087, 2089}, {3251, 3253, 3257, 3259}, {3461, 3463, 3467, 3469}, {5651, 5653, 5657, 5659}, {9431, 9433, 9437, 9439}, {13001, 13003, 13007, 13009}, {15641, 15643, 15647, 15649}, {15731, 15733, 15737, 15739}, {16061, 16063, 16067, 16069}, {18041, 18043, 18047, 18049}, {18911, 18913, 18917, 18919}, {19421, 19423, 19427, 19429}, {21011, 21013, 21017, 21019}, {22271, 22273, 22277, 22279}, {25301, 25303, 25307, 25309}, {31721, 31723, 31727, 31729}, {34841, 34843, 34847, 34849}, {43781, 43783, 43787, 43789}, {51341, 51343, 51347, 51349}, {55331, 55333, 55337, 55339}, {62981, 62983, 62987, 62989}, {67211, 67213, 67217, 67219}, {69491, 69493, 69497, 69499}, {72221, 72223, 72227, 72229}, {77261, 77263, 77267, 77269}, {79691, 79693, 79697, 79699}, {81041, 81043, 81047, 81049}, {82721, 82723, 82727, 82729}, {88811, 88813, 88817, 88819}, {97841, 97843, 97847, 97849}, {99131, 99133, 99137, 99139}, {101111, 101113, 101117, 101119}, {109841, 109843, 109847, 109849}, {116531, 116533, 116537, 116539}, {119291, 119293, 119297, 119299}, {122201, 122203, 122207, 122209}, {135461, 135463, 135467, 135469}, {144161, 144163, 144167, 144169}, {157271, 157273, 157277, 157279}, {165701, 165703, 165707, 165709}, {166841, 166843, 166847, 166849}, {171161, 171163, 171167, 171169}, {187631, 187633, 187637, 187639}, {194861, 194863, 194867, 194869}, {195731, 195733, 195737, 195739}, {201491, 201493, 201497, 201499}, {201821, 201823, 201827, 201829}, {217361, 217363, 217367, 217369}, {225341, 225343, 225347, 225349}, {240041, 240043, 240047, 240049}, {243701, 243703, 243707, 243709}, {247601, 247603, 247607, 247609}, {247991, 247993, 247997, 247999}, {257861, 257863, 257867, 257869}, {260411, 260413, 260417, 260419}, {266681, 266683, 266687, 266689}, {268811, 268813, 268817, 268819}, {276041, 276043, 276047, 276049}, {284741, 284743, 284747, 284749}, {285281, 285283, 285287, 285289}, {294311, 294313, 294317, 294319}, {295871, 295873, 295877, 295879}, {299471, 299473, 299477, 299479}, {300491, 300493, 300497, 300499}, {301991, 301993, 301997, 301999}, {326141, 326143, 326147, 326149}, {334421, 334423, 334427, 334429}, {340931, 340933, 340937, 340939}, {346391, 346393, 346397, 346399}, {347981, 347983, 347987, 347989}, {354251, 354253, 354257, 354259}, {358901, 358903, 358907, 358909}, {361211, 361213, 361217, 361219}, {375251, 375253, 375257, 375259}, {388691, 388693, 388697, 388699}, {389561, 389563, 389567, 389569}, {392261, 392263, 392267, 392269}, {394811, 394813, 394817, 394819}, {397541, 397543, 397547, 397549}, {397751, 397753, 397757, 397759}, {402131, 402133, 402137, 402139}, {402761, 402763, 402767, 402769}, {412031, 412033, 412037, 412039}, {419051, 419053, 419057, 419059}, {420851, 420853, 420857, 420859}, {427241, 427243, 427247, 427249}, {442571, 442573, 442577, 442579}, {444341, 444343, 444347, 444349}, {452531, 452533, 452537, 452539}, {463451, 463453, 463457, 463459}, {465161, 465163, 465167, 465169}, {467471, 467473, 467477, 467479}, {470081, 470083, 470087, 470089}, {477011, 477013, 477017, 477019}, {490571, 490573, 490577, 490579}, {495611, 495613, 495617, 495619}, {500231, 500233, 500237, 500239}, {510611, 510613, 510617, 510619}, {518801, 518803, 518807, 518809}, {536441, 536443, 536447, 536449}, {536771, 536773, 536777, 536779}, {539501, 539503, 539507, 539509}
Table#
Related#
- Learn more about Prime quadruplets.
- All prime quadruplets